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Abstract

This paper presents a theoretical model for coupled extension and flexure with shear deformations of an electro-

elastic plate under biasing fields. The governing equations of this model, defined in the middle plane of the plates, are

derived from the full three-dimensional theory of electroelasticity for small fields superposed upon finite biasing fields,

under the assumption that the stress component normal to the plate vanishes identically. As examples to illustrate the

applications of this model, the authors include their analysis of buckling of three plates, one single-layered plate and

two double-layered plates (i.e., bimorphs) of distinct poling configurations. This analysis indicates that the electro-

mechanical coupling strengthens the plates against buckling. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric effect often refers to the linear coupling between mechanical deformations and electric
fields. In contrast, materials exhibiting nonlinear electromechanical coupling are called electroelastic ma-
terials. An example of such materials is the electrostrictive materials which are characterized by their
quadratic dependence of mechanical fields on electric fields. Many electromechanical devices have com-
ponents made of electroelastic materials, and some of these components can be modeled as plates because
of their plate-like geometry. The investigations on the governing equations of piezoelectric plates were
initiated by Mindlin, and the early contributions by Mindlin and his students can be found in the books by
Tiersten (1969) and Deresiewicz et al. (1989), as well as a review article by Wang and Yang (2000). Re-
cently, the study of smart structures further enriches the theories of piezoelectric plates, and many refer-
ences on this topic can be found in Rao and Sunar (1994), Tani et al. (1998), and Sunar and Rao (1999).
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The performance of electromechanical devices can be affected by many environmental effects that act as
initial or biasing fields in these devices. For example, for a piezoelectric resonator designed to operate at a
particular resonant frequency, a temperature change or mounting stresses can cause initial deformations
and stresses in the resonator and induce frequency shift (Tiersten and Sinha, 1979). The performance of
underwater transducers is affected by initial fields due to hydrostatic pressure (Wilson, 1985). A piezo-
electric device mounted on a moving object is affected by acceleration induced stresses or strains (Zhou and
Tiersten, 1991). While biasing fields can cause many undesirable effects, they are the foundation of the
working principles of many piezoelectric sensors (Ballantine et al., 1997). For example, the frequency shift
of a piezoelectric resonator caused by a temperature change can be used to design thermometers. The
response of an electroelastic body under biasing fields can also be used to measure nonlinear material
constants (Cho and Yamanouchi, 1987). Either for the purpose of avoiding the biasing fields or making use
of them, knowledge of the behaviors of electroelastic bodies under biasing fields is crucial in the design of
many electromechanical devices. The effect of biasing fields in an electroelastic body can be described by the
theory of small fields superposed on finite biasing fields. Such a theory was given by Baumhauer and
Tiersten (1973), which can also be found in a more recent paper (Tiersten, 1995). The development of the
theory for small fields on finite biasing fields relies on the fully nonlinear theory of electroelasticity
(Tiersten, 1971).
In the special case of an elastic body under biasing fields, many problems have been studied, which can

be found in Iesan’s book (1989) with applications in, e.g., stability. In particular, two-dimensional equa-
tions for anisotropic elastic plates under various biasing fields were derived by a few investigators (Lee
et al., 1975; Lee and Yong, 1986; Wang et al., 1998; Wang, 1999) using power series or trigonometric
approximations along the plate thickness. In this paper, we develop a theoretical model for coupled ex-
tension and flexure with shear deformations of an electroelastic plate under biasing fields. The governing
equations of this model are derived from the full three-dimensional theory of electroelasticity for small
fields superposed upon finite biasing fields, under the assumption that the stress component normal to the
plate vanishes identically. To illustrate the applications of this model, we include the analysis of buckling of
three plates, one single-layered plate and two double-layered plates (i.e., bimorphs) of distinct poling
configurations.

2. Equations for small fields superposed on finite biasing fields

The theory for small fields superposed on finite biasing fields in an electroelastic body (Baumhauer and
Tiersten, 1973; Tiersten, 1995) is summarized in this section. Consider the following three configurations of
an electroelastic body as shown in Fig. 1. Cartesian tensor notation, the summation convention for re-

Fig. 1. The referential, initial, and present configurations of an electroelastic body.
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peated tensor indices and the convention that a comma followed by an index denotes partial differentiation
with respect to the coordinate associated with the index will be used. A superimposed dot represents
material time derivative.

2.1. The referential configuration

At time t ¼ 0, the body is undeformed and free of all fields. A generic point at this state is denoted by X
having rectangular coordinates XK . The mass density in the referential configuration is denoted by q0.

2.2. The initial configuration

In this state the body is deformed finitely and statically, and carries finite, static electric fields. The
position of the material point associated with X is given by xa ¼ xaðXÞ, with w ¼ x� X as the initial dis-
placement vector. The electric potential of this state is denoted by /0. The initial deformations and fields are
also called the biasing fields. They satisfy the following static equations of nonlinear electroelasticitybTT 0Ka;K ¼ 0; bDD0

K;K ¼ 0; ð1Þ

where the body force and charge are not included. The total Piola–Kirchhoff stress tensor bTT 0Ka and the
referential electric displacement vector bDD0

K have the expressionsbTT 0Ka ¼ xa;LT 0KL þ J0XK;be0 E0bE
0
a

�
� E0cE

0
cdba=2

�
;bDD0

K ¼ e0J0XK;aE0a þ bPP 0K : ð2Þ

In (2), J0 ¼ detðxa;KÞ, E0a ¼ �/0;a, dab is the Kronecker delta, e0 the dielectric permittivity of free space, and

bTT 0KL ¼ oR
oSKL

����
E0;W0

; bPP 0K ¼ � oR
oWK

����
E0;W0

: ð3Þ

In (3), the finite strains and the referential electric field of the initial configuration are defined by

S0KL ¼ ðxa;Kxa;L � dKLÞ=2; W 0
K ¼ �/0;K ð4Þ

and R ¼ RðSKL;WKÞ is an energy density function of the strain tensor S and the referential electric field W.
When the fields are moderately large, the weak nonlinear behavior of the material can be described by the
lower-order terms of

R SKL;WKð Þ ¼ 1
2
cABCDSABSCD � eABCWASBC � 1

2
e0vABWAWB þ 1

6
cABCDEF SABSCDSEF þ 1

2
kABCDEWASBCSDE

� 1
2
bABCDWAWBSCD � 1

6
vABCWAWBWC þ higher-order terms; ð5Þ

where the second-order material constants cABCD and eABC represent the elastic and piezoelectric constants,
and vAB the dielectric susceptibility. They are responsible for linear material behaviors. cABCDEF , kABCDE and
vABC are the third-order elastic, piezoelectric, and dielectric constants. bABCD are the electrostrictive con-
stants. The third- and higher-order material constants are related to nonlinear behaviors of the material.
The material constants in (5) are called the fundamental material constants, in comparison to the effective
material constants to be introduced below.

2.3. The present configuration

To the deformed body at the initial configuration, time-dependent small deformations and electric fields
are applied. The final position of the material point associated with X is given by yi ¼ yiðX; tÞ. The small,
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incremental displacement vector is denoted by u, and the incremental electric potential by /1. The equations
of motion and electrostatics for the incremental fields arebTT 1Ka;K ¼ q0€uua; bDD1

K;K ¼ 0; ð6Þ
in which the incremental stress tensor and incremental electric displacement vector are given by the fol-
lowing constitutive relationsbTT 1Ka ¼ GKaLcuc;L þ RLKa/

1
;L;bDD1

K ¼ RKLcuc;L � LKL/
1
;L:

ð7Þ

In (7), GKaLc, RLKa, and LKL are the effective elastic, piezoelectric, and dielectric constants with the following
expressions

GKaLc ¼ xa;M
o2R

oSKMoSLN

����
E0;W0

xc;N þ T 0KLdac þ gKaLc ¼ GLcKa;

RKLc ¼ � o2R
oWKoSML

����
E0;W0

xc;M þ rKLc;

LKL ¼ � o2R
oWKoWL

����
E0;W0

þ lKL ¼ LLK ;

ð8Þ

where

gKaLc ¼ e0J0 E0aE
0
b XK;bXL;c

�h
� XK;cXL;b

�
� E0aE

0
cXK;bXL;b þ E0bE

0
c XK;aXL;b

�
� XK;bXL;a

�
þ 1
2
E0bE

0
b XK;cXL;a

�
� XK;aXL;c

�i
; ð9aÞ

rKLc ¼ e0J0 E0aXK;aXL;c

�
� E0aXK;cXL;a � E0cXK;aXL;a

�
; ð9bÞ

lKL ¼ e0J0XK;aXL;a: ð9cÞ
We note that in (7) the incremental stress tensor and electric displacement vector depend linearly on the

incremental displacement gradient and potential gradient. The important thing to observe is that the ef-
fective material constants are functions of the linear and nonlinear material constants cABCD, eABC, vAB,
cABCDEF , kABCDE, vABC , bABCD, etc., and the biasing fields w and /0. Since the incremental stress tensor and
displacement gradient in general are not symmetric and that the effective constants depend on the biasing
fields, the effective material constants in (9a)–(9c) usually have lower symmetry than the fundamental linear
elastic, piezoelectric, and dielectric constants. This is called the induced anisotropy. There can be as many
as 45 independent components for GKaLc, 27 independent components for RKLc, and six independent
components for LKL. The above shows that the biasing fields effectively change the material properties and
hence the material response to excitations. We note that the expression in Tiersten (1995) corresponding to
(9a) has minor algebraic errors (Yang and Tiersten, 1999), and (9a) is the corrected version. The following
variational formulation corresponding to (6) is convenient for developing plate equationsZ

V

bTT 1Ka;K

�h
� q0€uua

�
dua þ bDD1

K;Kd/1
i
dV ¼ 0: ð10Þ

3. The derivation of plate equations

Consider an electroelastic plate in the reference configuration with the X3 axis along the plate normal, as
shown in Fig. 2. Since the plate is assumed to be thin, we make the usual assumption of vanishing normal
stress (Mindlin, 1955)
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bTT 133 ¼ G33Lcuc;L þ RL33/
1
;L ¼ 0: ð11Þ

From (11) we can solve for u3;3 with the result

u3;3 ¼
�1
G3333

G33Lcuc;L

h
� G3333u3;3 þ RL33/

1
;L

i
: ð12Þ

We note that u3;3 has been eliminated from the right hand side of (12) because when L ¼ c ¼ 3 the two terms
containing u3;3 will cancel with each other. Substituting (12) back into (7), we obtainbTT 1Ka ¼ GKaLcuc;L þ RLKa/

1
;L;bDD1

K ¼ RKLcuc;L � LKL/
1
;L;

ð13Þ

where

GKaLc ¼ GKaLc � GKa33G33Lc=G3333;

RKLc ¼ RKLc � RK33G33Lc=G3333;

LKL ¼ LKL þ RK33RL33=G3333:

ð14Þ

We note that in (13) bTT 133 ¼ 0 and its right hand side does not contain u3;3.
For a first-order theory we make the following expansions of the incremental displacement and electric

potential

u1 ffi uð0Þ1 X1;X2; tð Þ þ X3u
ð1Þ
1 X1;X2; tð Þ;

u2 ffi uð0Þ2 X1;X2; tð Þ þ X3u
ð1Þ
2 X1;X2; tð Þ;

u3 ffi uð0Þ3 X1;X2; tð Þ;
/1 ffi /ð0Þ X1;X2; tð Þ þ X3/

ð1Þ X1;X2; tð Þ;

ð15Þ

where uð0Þ1 and uð0Þ2 are the plate extensional displacements, uð0Þ3 the flexural displacement, and uð1Þ1 and uð1Þ2
the shear displacements. From these plate displacements the thickness expansion or contraction accom-
panying the extension and flexure of the plate due to Poisson’s effect can be found from (12) if wanted.
Substituting (15) into (10), with integration by parts, for independent variations of duð0Þ1 , du

ð0Þ
2 , du

ð0Þ
3 , du

ð1Þ
1 ,

duð1Þ2 , d/ð0Þ and d/ð1Þ, we obtain the following two-dimensional equations of motion and electrostatics

bTT ð0Þ
Aa;A þ F ð0Þ

a ¼ 2q0h€uuð0Þa ; a ¼ 1; 2; 3; ð16aÞ

bTT ð1Þ
Aa;A � bTT ð0Þ

3a þ F ð1Þ
a ¼ 2q0h

3

3
€uuð1Þa ; a ¼ 1; 2; ð16bÞ

Fig. 2. The reference configuration of an electroelastic plate and the coordinate system.
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bDDð0Þ
A;A þ bDDð0Þ ¼ 0; ð16cÞ

bDDð1Þ
A;A � bDDð0Þ

3 þ bDDð1Þ ¼ 0; ð16dÞ

where we have introduced the convention that the index A assumes 1 and 2 but not 3. Eq. (16a) for a ¼ 1, 2
are the equations for extension, and for a ¼ 3 the equation for flexure. Eq. (16b) are for shears in the X1 and
X2 directions. In (16a)–(16d) the plate resultants and surface loads of various orders are defined by

bTT ðnÞ
Ka ; bDDðnÞ

K

n o
¼
Z h

�h
X n
3
bTT 1Ka;

bDD1
K

n o
dX3; ð17aÞ

F ðnÞ
a ¼ Xn

3
bTT 13ah ih

�h
; bDDðnÞ ¼ ½Xn

3
bDD1
3�
h
�h; n ¼ 0; 1; ð17bÞ

wherebTT ðnÞ
Ka represent plate extensional and shearing forces, and bending and twisting moments. From (15)

we can also write

uc;L ffi U ð0Þ
cL X1;X2; tð Þ þ X3U

ð1Þ
cL X1;X2; tð Þ;

/1;L ffi �W ð0Þ
L X1;X2; tð Þ � X3W

ð1Þ
L X1;X2; tð Þ;

ð18Þ

where

U ð0Þ
11 ¼ uð0Þ1;1; U ð0Þ

12 ¼ uð0Þ1;2; U ð0Þ
13 ¼ uð1Þ1 ;

U ð0Þ
21 ¼ uð0Þ2;1; U ð0Þ

22 ¼ uð0Þ2;2; U ð0Þ
23 ¼ uð1Þ2 ;

U ð0Þ
31 ¼ uð0Þ3;1; U ð0Þ

32 ¼ uð0Þ3;2; U ð0Þ
33 ¼ 0;

U ð1Þ
11 ¼ uð1Þ1;1; U ð1Þ

12 ¼ uð1Þ1;2; U ð1Þ
13 ¼ 0;

U ð1Þ
21 ¼ uð1Þ2;1; U ð1Þ

22 ¼ uð1Þ2;2; U ð1Þ
23 ¼ 0;

U ð1Þ
31 ¼ 0; U ð1Þ

32 ¼ 0; U ð1Þ
33 ¼ 0;

W ð0Þ
1 ¼ �/ð0Þ

;1 ; W ð0Þ
2 ¼ �/ð0Þ

;2 ; W ð0Þ
3 ¼ �/ð1Þ;

W ð1Þ
1 ¼ �/ð1Þ

;1 ; W ð1Þ
2 ¼ �/ð1Þ

;2 ; W ð1Þ
3 ¼ 0:

ð19Þ

The displacement gradients of various orders in (19) represent plate strains and bending curvatures, etc.
From (17a), with the substitution of (13) and (18), we obtain the plate constitutive relations asbTT ð0Þ

Ka ¼ Gð0Þ
KaLcU

ð0Þ
cL þ Gð1Þ

KaLcU
ð1Þ
cL � Rð0Þ

LKaW
ð0Þ
L � Rð1Þ

LKaW
ð1Þ
L ;bTT ð1Þ

Ka ¼ Gð1Þ
KaLcU

ð0Þ
cL þ Gð2Þ

KaLcU
ð1Þ
cL � Rð1Þ

LKaW
ð0Þ
L � Rð2Þ

LKaW
ð1Þ
L ;bDDð0Þ

K ¼ Rð0Þ
KLcU

ð0Þ
cL þ Rð1Þ

KLcU
ð1Þ
cL þ Lð0Þ

KLW
ð0Þ
L þ Lð1Þ

KLW
ð1Þ
L ;bDDð1Þ

K ¼ Rð1Þ
KLcU

ð0Þ
cL þ Rð2Þ

KLcU
ð1Þ
cL þ Lð1Þ

KLW
ð0Þ
L þ Lð2Þ

KLW
ð1Þ
L ;

ð20Þ

where

GðnÞ
KaLc;R

ðnÞ
Klc;L

ðnÞ
KL

n o
¼
Z h

�h
X n
3 GKaLc;RKLc; LKL

� 

dX3; n ¼ 0; 1; 2: ð21Þ

Physically, GðnÞ
KaLc represent the plate flexural and extensional stiffness, etc. We note from (20) that extension

and bending may be coupled due to nonuniform biasing fields. We also note from (21) that in a plate
theory, only the moments of various orders of the biasing fields matter, not the exact three-dimensional
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distributions of the biasing fields. In summary, we have obtained the two-dimensional equations of motion
and electrostatics (16a)–(16d), the constitutive relations (20), and the displacement gradients and electric
fields (19). With successive substitutions, (16a)–(16d) can be written as seven equations for the seven un-
knowns of uð0Þ1 , u

ð0Þ
2 , u

ð0Þ
3 , u

ð1Þ
1 , u

ð1Þ
2 , /ð0Þ and /ð1Þ. To these equations the proper forms of the boundary

conditions can be determined from the variational formulation (10). At the boundary of a plate with unit
exterior normal n and unit tangent s, we need to prescribe

bTT ð0Þ
nn or uð0Þn ; bTT ð0Þ

ns or uð0Þs ; bTT ð0Þ
n3 or u

ð0Þ
3 ;bTT ð1Þ

nn or uð1Þn ; bTT ð1Þ
ns or uð1Þs ;bDDð0Þ

n or /ð0Þ; bDDð1Þ
n or /ð1Þ:

ð22Þ

We note that in the first-order plate theories by Mindlin (1955) using power series approximation for the
variation of fields along the plate thickness, shear correction factors are often needed. Those correction
factors play a role in shear dominated cases, e.g., vibrations with frequencies close to the first thickness-
shear frequency. In the present paper our main interest is on the extension and flexure with small shear
deformations. Therefore we ignore the shear correction factors which, if needed, can be included in the
manner of Mindlin (1955). The simplest way is to use a modified mass density (Mindlin, 1955).

4. Buckling of piezoelectric plates

Potential applications of the equations derived in the previous section are many. The simplest may be the
buckling of electroelastic plates. For the classical description of the buckling phenomenon, the electroelastic
counterpart of the initial stress theory in elasticity is sufficient. Such a theory can be obtained by setting
x ¼ X in the equations for small fields superposed on finite biasing fields (Iesan, 1989). Furthermore, for
buckling analysis, a quadratic expression of R with the first three terms of the right hand side of (5) and the
corresponding linear constitutive relations will be enough, and the biasing fields can be treated as small
fields too. With these simplifications, we use the equations in the previous sections to perform buckling
analysis of a few piezoelectric plates and bimorphs made from polarized ceramics. Three cases corre-
sponding to Fig. 3 will be considered. We limit our discussion to plane strain analysis with u2 ¼ 0 and
o=oX2 ¼ 0. For all three cases the two major surfaces of the plate at X3 ¼ 	h are traction free and are
unelectroded with vanishing normal electric displacement. The plates are mechanically simply supported at
their end faces at X1 ¼ 0 and X1 ¼ l. The electric end conditions will be specified later in each specific case.
The two ends of the plates are loaded by an axial force p ¼ 2hbTT 011 per unit length in the X2 direction, which is
responsible for the biasing deformation.

4.1. Case (a)

Consider a ceramic plate poled in the X1 direction as shown in Fig. 3(a). From Auld (1973), the material
matrices are

c33 c13 c13 0 0 0
c31 c11 c12 0 0 0
c31 c21 c11 0 0 0
0 0 0 c66 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

0BBBBBB@

1CCCCCCA;

e33 0 0
e31 0 0
e31 0 0
0 0 0
0 0 e15
0 e15 0

0BBBBBB@

1CCCCCCA;
e33 0 0
0 e11 0
0 0 e11

0@ 1A; ð23Þ
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which are obtained from the material matrices for ceramics poled in the X3 direction by properly reordering
rows and columns. The plate is electroded at its two end faces at X1 ¼ 0 and X1 ¼ l. The electrodes are
shown by thick lines in the figure. When the initial load p is being applied, the end electrodes are shorted to
eliminate the initial electric field E1 which otherwise would exist. Once p is already loaded, there exist initial
charges on the end electrodes. The electrodes are then opened during the incremental flexural deformation
and there are no incremental charges on these electrodes. Therefore for the incremental fields the electric
displacement vanishes at both ends. Then the governing equations for the incremental fields take the
form

Gð0Þ
1313u

ð0Þ
3;11 þ Gð0Þ

1331u
ð1Þ
1;1 þ Rð0Þ

313/
ð1Þ
;1 ¼ 0; ð24aÞ

Gð2Þ
1111u

ð1Þ
1;11 � Gð0Þ

3113u
ð0Þ
3;1 � Gð0Þ

3131u
ð1Þ
1 þ Rð2Þ

111/
ð1Þ
;11 � Rð0Þ

331/
ð1Þ ¼ 0; ð24bÞ

Lð0Þ
11 /ð0Þ

;11 ¼ 0; ð24cÞ

Rð2Þ
111u

ð1Þ
1;11 � Rð0Þ

313u
ð0Þ
3;1 � Rð0Þ

331u
ð1Þ
1 � Lð2Þ

11 /ð1Þ
;11 þ Lð0Þ

33 /ð1Þ ¼ 0 ð24dÞ

and the boundary conditions are

uð0Þ3 ¼ 0; at X1 ¼ 0; l; ð25aÞ

bTT ð1Þ
11 ¼ Gð2Þ

1111u
ð1Þ
1;1 þ Rð2Þ

111/
ð1Þ
;1 ¼ 0; at X1 ¼ 0; l; ð25bÞ

bDDð0Þ
1 ¼ �2h�ee33/ð0Þ

;1 ¼ 0; at X1 ¼ 0; l; ð25cÞ

bDDð1Þ
1 ¼ Rð2Þ

111u
ð1Þ
1;1 � Lð2Þ

11 /ð1Þ
;1 ¼ 0; at X1 ¼ 0; l; ð25dÞ

Fig. 3. Simply supported ceramic plates of length l and thickness 2h.
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where

Gð0Þ
1313 ¼ 2hc44 þ p; Gð0Þ

1331 ¼ Gð0Þ
3113 ¼ Gð0Þ

3131 ¼ 2hc44;

Gð2Þ
1111 ¼

1

3
h2ð2h�cc33 þ pÞ; Rð0Þ

313 ¼ Rð0Þ
331 ¼ 2he15;

Rð2Þ
111 ¼

2

3
h3�ee33; Lð2Þ

11 ¼ 2
3
h3�ee33; Lð0Þ

33 ¼ 2he11;

�cc33 ¼ c33 �
c213
c11

; �ee33 ¼ e33 �
e31c31
c11

; �ee33 ¼ e33 þ
e231
c11

:

ð26Þ

We note from (25b) that the bending moment bTT ð1Þ
11 is coupled to W ð1Þ

1 ¼ �/ð1Þ
;1 through �ee33 as expected.

Furthermore, from bTT ð0Þ
13 ¼ Gð0Þ

1313u
ð0Þ
3;1 þ Gð0Þ

1331u
ð1Þ
1 þ Rð0Þ

313/
ð1Þ it can be seen that the transverse shear force bTT ð0Þ

13 is

coupled to W ð0Þ
3 ¼ �/ð1Þ through e15 as expected. Eqs. (24c) and (25c) show that /

ð0Þ is a constant which can
be taken to be zero. Let

uð0Þ3 ¼ A sin kX1; uð1Þ1 ¼ B cos kX1; /ð1Þ ¼ C cos kX1; ð27Þ

where A, B, and C are undetermined constants and k ¼ p=l. The boundary conditions in (25a)–(25d) are
satisfied automatically. Then the buckling load can be determined from the following equations obtained
by substituting (27) into (24a), (24b) and (24d)

k2Gð0Þ
1313Aþ kGð0Þ

1331Bþ kRð0Þ
313C ¼ 0;

kGð0Þ
3113Aþ k2Gð2Þ

1111

�
þ Gð0Þ

3131

�
Bþ k2Rð2Þ

111

�
þ Rð0Þ

331

�
C ¼ 0;

kRð0Þ
313Aþ k2Rð2Þ

111

�
þ Rð0Þ

331

�
B� k2Lð2Þ

11

�
þ Lð0Þ

33

�
C ¼ 0:

ð28Þ

For nontrivial solutions of A, B, andC, the following condition must be satisfied

k2Gð0Þ
1313 kGð0Þ

1331 kRð0Þ
313

kGð0Þ
3113 k2Gð2Þ

1111 þ Gð0Þ
3131 k2Rð2Þ

111 þ Rð0Þ
331

kRð0Þ
313 k2Rð2Þ

111 þ Rð0Þ
331 � k2Lð2Þ

11 þ Lð0Þ
33

� �
�������

������� ¼ 0; ð29Þ

which can be written as

að1Þ�ppð1Þ2 þ bð1Þ�ppð1Þ þ cð1Þ ¼ 0; ð30Þ

where

�ppð1Þ ¼ p
2h�cc33

; k0 ¼
p2

3

h
l

� �2
; að1Þ ¼ k0;

bð1Þ ¼ k0 þ
1

�cc33
ðk0

264 þ 1Þc44 þ
k0e215 þ k0�ee33 þ e15

� �2
e11 þ k0�ee33

375;
cð1Þ ¼ 1

�cc33
k0c44

"
þ k0e215 þ k20�cc

�1
33 �ee

2
33c44

e11 þ k0�ee33

#
:

ð31Þ

Since k0 
 1 for a thin plate, it follows from (31) that ðbð1ÞÞ2 � 4að1Þcð1Þ and bð1Þ � að1Þ for thin plates.
Hence, an approximate solution of (30) can be found as
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�ppð1Þ ffi � cð1Þ

bð1Þ
1

 
þ að1Þcð1Þ

bð1Þð Þ2

!
: ð32Þ

Our main interest is the effect of piezoelectric coupling on the buckling load. To see this more clearly, we let
c44 ! 1 in (32), which effectively eliminates plate shear deformations and the related piezoelectric coupling
through e15, and then expand (32) into a polynomial of k0 which is small. This leads to

�ppð1Þ ffi �k0 1
�

þ k0�kk2
�
; ð33aÞ

�kk2 ¼ �ee233= �cc33e11
� �

; ð33bÞ

where �kk2 is an electromechanical coupling factor. We note that under our notation �k0 is the nondimen-
sional buckling load from an elastic analysis without considering piezoelectric effect. The second term on
the right hand side of (33a) represents the effect of piezoelectric coupling which is due to �ee33 alone now. We
note that this additional term is proportional to �kk2 which ranges from 0.1 to 0.6 for most polarized ce-
ramics. Since �kk2 is multiplied by k0 which is a small number, the piezoelectric modification on the buckling
load is a small addition to the elastic buckling load. Hence an elastic analysis without considering piezo-
electric effect gives a conservative estimate of the buckling load.

4.2. Case (b)

In this case we consider a ceramic bimorph as shown in Fig. 3(b). The end faces are unelectroded. Then
the governing equations for the incremental fields are

Gð0Þ
1313u

ð0Þ
3;11 þ Gð0Þ

1331u
ð1Þ
1;1 ¼ 0; ð34aÞ

Gð2Þ
1111u

ð1Þ
1;11 þ Rð1Þ

111/
ð0Þ
;11 � Gð0Þ

3113u
ð0Þ
3;1 � Gð0Þ

3131u
ð1Þ
1 ¼ 0; ð34bÞ

Rð1Þ
111u

ð1Þ
1;11 � Lð0Þ

11 /ð0Þ
;11 ¼ 0; ð34cÞ

Lð2Þ
11 /ð1Þ

;11 � Lð0Þ
33 /ð1Þ ¼ 0; ð34dÞ

with the following boundary conditions

uð0Þ3 ¼ 0; at X1 ¼ 0; l; ð35aÞ

bTT ð1Þ
11 ¼ Gð2Þ

1111u
ð1Þ
1;1 þ Rð1Þ

111/
ð0Þ
;1 ¼ 0; at X1 ¼ 0; l; ð35bÞ

bDDð0Þ
1 ¼ Rð1Þ

111u
ð1Þ
1;1 � Lð0Þ

11 /ð0Þ
;1 ¼ 0; at X1 ¼ 0; l; ð35cÞ

bDDð1Þ
1 ¼ �Lð2Þ

11 /ð1Þ
;1 ¼ 0; at X1 ¼ 0; l; ð35dÞ

where the plate material constants are as in (26) plus

Rð1Þ
111 ¼ h2�ee33: ð36Þ

We note from (35b) that the bending moment bTT ð1Þ
11 is coupled to W ð0Þ

1 ¼ �/ð0Þ
;1 through �ee33 as expected. We

also note that Eqs. (34d) and (35d) imply /ð1Þ ¼ 0. Assume
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uð0Þ3 ¼ A sin kX1; ð37aÞ

uð1Þ1 ¼ B cos kX1; ð37bÞ

/ð0Þ ¼ D cos kX1 ð37cÞ

which satisfy the boundary conditions in (35a)–(35d). Eliminating /ð0Þ from (34b) by (34c), and substituting
(37a) and (37b) into the resulting (34b) and (34a), we obtain

k2Gð0Þ
1313Aþ kGð0Þ

1331B ¼ 0;

kGð0Þ
3113Aþ k2 Gð2Þ

1111

hn
þ ðLð0Þ

11 Þ
�1Rð1Þ2

111

i
þ Gð0Þ

3131

o
B ¼ 0:

ð38Þ

For nontrivial solutions of A and B, the following must be true

kGð0Þ
1313 Gð0Þ

1331

kGð0Þ
3113 k2 Gð2Þ

1111 þ ðLð0Þ
11 Þ

�1Rð1Þ2
111

h i
þ Gð0Þ

3131

�����
����� ¼ 0; ð39Þ

or

að2Þ�ppð2Þ2 þ bð2Þ�ppð2Þ þ cð2Þ ¼ 0; ð40Þ

where

�ppð2Þ ¼ p
2h�cc33

; að2Þ ¼ k0;

bð2Þ ¼ k0 þ
1

�cc33
ðk0
 

þ 1Þc44 þ
3

4
k0�ee233�ee

�1
33

!
;

cð2Þ ¼ 1

�cc33
k0c44

 
þ 3
4

k0c44�cc�133 �ee
2
33�ee

�1
33

!
:

ð41Þ

Then an approximate solution of (41) is

�ppð2Þ ffi � cð2Þ

bð2Þ
1

 
þ að2Þcð2Þ

ðbð2ÞÞ2

!
: ð42Þ

Letting c44 ! 1 in (42) and then expanding the result into a polynomial of k0, we have

�ppð2Þ ffi �k0 1

�
þ 3
4
�kk233

�
; ð43aÞ

�kk233 ¼ �ee233= �cc33e33
� �

: ð43bÞ

Comparing (43a) with (33a), we note the important difference that in (43a) the piezoelectric modification on
the buckling load is not multiplied by the small number k0. This is because in (24a)–(24d) the plate pi-
ezoelectric coefficient Rð2Þ

111 is proportional to h
3 but in (34a)–(34d) Rð1Þ

111 is proportional to h
2 and the fact that

it is the squares of the piezoelectric coefficients that appear in the buckling loads. Therefore the piezoelectric
effect on the buckling load is much stronger in the present case than in the previous case.
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4.3. Case (c)

The third example is a ceramic bimorph as shown in Fig. 3(c). For ceramics poled in the X3 direction the
material matrices are (Auld, 1973)

c11 c12 c13 0 0 0
c21 c11 c13 0 0 0
c31 c31 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

0BBBBBB@

1CCCCCCA;

0 0 e31
0 0 e31
0 0 e33
0 e15 0
e15 0 0
0 0 0

0BBBBBB@

1CCCCCCA;
e11 0 0
0 e11 0
0 0 e33

0@ 1A: ð44Þ

The plate is electroded at X1 ¼ 0 and X1 ¼ l, with shorted and grounded electrodes. The governing
equations take the following form

Gð0Þ
1313u

ð0Þ
3;11 þ Gð0Þ

1331u
ð1Þ
1;1 þ Rð1Þ

113/
ð1Þ
;11 ¼ 0; ð45aÞ

Gð2Þ
1111u

ð1Þ
1;11 � Gð0Þ

3113u
ð0Þ
3;1 � Gð0Þ

3131u
ð1Þ
1 þ Rð1Þ

311

h
� Rð1Þ

131

i
/ð1Þ

;1 ¼ 0; ð45bÞ

Lð0Þ
11 /ð0Þ

;11 ¼ 0; ð45cÞ

Rð1Þ
113u

ð0Þ
3;11 � Rð1Þ

311

h
� Rð1Þ

131

i
uð1Þ1;1 � Lð2Þ

11 /ð1Þ
;11 þ Lð0Þ

33 /ð1Þ ¼ 0: ð45dÞ

The boundary conditions are

uð0Þ3 ¼ 0; at X1 ¼ 0; l; ð46aÞ

bTT ð1Þ
11 ¼ Gð2Þ

1111u
ð1Þ
1;1 þ h2�ee31/

ð1Þ ¼ 0; at X1 ¼ 0; l; ð46bÞ

/ð0Þ ¼ 0; at X1 ¼ 0; l; ð46cÞ

/ð1Þ ¼ 0; at X1 ¼ 0; l; ð46dÞ

where

Gð2Þ
1111 ¼

1

3
h2 2h�cc11
�

þ p
�
; Gð0Þ

1313 ¼ 2hc44 þ p;

Gð0Þ
1331 ¼ Gð0Þ

3113 ¼ Gð0Þ
3131 ¼ 2hc44; Rð1Þ

113 ¼ Rð1Þ
131 ¼ h2e15;

Rð1Þ
311 ¼ h2�ee31; Lð0Þ

11 ¼ 2he11; Lð2Þ
11 ¼ 2

3
h3e11; Lð0Þ

33 ¼ 2h�ee33;

�cc11 ¼ c11 � c213=c33; �ee31 ¼ e31 � e33c31=c33; �ee33 ¼ e33 þ e233=c33:

ð47Þ

We note from (46b) that the bending moment bTT ð1Þ
11 is coupled to W ð0Þ

3 ¼ �/ð1Þ through �ee31 as expected. In
this case /ð0Þ is zero. We let

uð0Þ3 ¼ A sin kX1; uð1Þ1 ¼ B cos kX1; /ð1Þ ¼ C sin kX1; ð48Þ

which satisfy the boundary conditions (46a)–(46d). Substituting (48) into (45a),(45b) and (45d)
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k2Gð0Þ
1313Aþ kGð0Þ

1331Bþ k2Rð1Þ
113C ¼ 0;

kGð0Þ
3113Aþ k2Gð2Þ

1111

�
þ Gð0Þ

3131

�
Bþ k Rð1Þ

131

�
� Rð1Þ

311

�
C ¼ 0;

k2Rð1Þ
113Aþ k Rð1Þ

131

�
� Rð1Þ

311

�
B� k2Lð2Þ

11

�
þ Lð0Þ

33

�
C ¼ 0:

ð49Þ

For nontrivial solutions of A, B, and C, the following condition should be satisfied

k2Gð0Þ
1313 kGð0Þ

1331 k2Rð1Þ
113

kGð0Þ
3113 k2Gð2Þ

1111 þ Gð0Þ
3131 �k Rð1Þ

311 � Rð1Þ
131

� �
k2Rð1Þ

113 �k Rð1Þ
311 � Rð1Þ

131

� �
� k2Lð2Þ

11 þ Lð0Þ
33

� �
��������

�������� ¼ 0; ð50Þ

or

að3Þ�ppð3Þ2 þ bð3Þ�ppð3Þ þ cð3Þ ¼ 0; ð51Þ

where

�ppð3Þ ¼ p
2h�cc11

; að3Þ ¼ k0;

bð3Þ ¼ k0 þ
1

�cc11
ðk0

2664 þ 1Þc44 þ
3k0 k0e215 þ e15 � �ee31

� �2 !
4 k0e11 þ �ee33
� �

3775;

cð3Þ ¼ 1

�cc11
k0c44

24 þ
3k0 k0e215 þ �cc�111 c44�ee

2
31

h i
4 k0e11 þ �ee33
� �

35:
ð52Þ

An approximate solution of (51) is found to be

�ppð3Þ ffi � cð3Þ

bð3Þ
1

 
þ að3Þcð3Þ

bð3Þð Þ2

!
: ð53Þ

Letting c44 ! 1 in (53) and expanding it into a polynomial of k0, we have

�ppð3Þ ffi �k0 1

�
þ 3
4
�kk231

�
; �kk231 ¼ �ee231= �cc11�ee33

� �
ð54Þ

which shows the same behavior as (43a) and (43b).

5. Conclusions

The coupled extension and flexure deformations with shear of an electroelastic plate under biasing fields
can be described by a two-dimensional model. The application of this model in analyzing the buckling loads
of three plates of different configurations shows that the electromechanical coupling strengthens the plates
against buckling and that the strengthening effect is significant for materials of strong piezoelectric cou-
pling. This implies that an elastic analysis without considering piezoelectric coupling yields a conservative
estimate of the critical buckling loads.
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