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Abstract

This paper presents a theoretical model for coupled extension and flexure with shear deformations of an electro-
elastic plate under biasing fields. The governing equations of this model, defined in the middle plane of the plates, are
derived from the full three-dimensional theory of electroelasticity for small fields superposed upon finite biasing fields,
under the assumption that the stress component normal to the plate vanishes identically. As examples to illustrate the
applications of this model, the authors include their analysis of buckling of three plates, one single-layered plate and
two double-layered plates (i.e., bimorphs) of distinct poling configurations. This analysis indicates that the electro-
mechanical coupling strengthens the plates against buckling. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric effect often refers to the linear coupling between mechanical deformations and electric
fields. In contrast, materials exhibiting nonlinear electromechanical coupling are called electroelastic ma-
terials. An example of such materials is the electrostrictive materials which are characterized by their
quadratic dependence of mechanical fields on electric fields. Many electromechanical devices have com-
ponents made of electroelastic materials, and some of these components can be modeled as plates because
of their plate-like geometry. The investigations on the governing equations of piezoelectric plates were
initiated by Mindlin, and the early contributions by Mindlin and his students can be found in the books by
Tiersten (1969) and Deresiewicz et al. (1989), as well as a review article by Wang and Yang (2000). Re-
cently, the study of smart structures further enriches the theories of piezoelectric plates, and many refer-
ences on this topic can be found in Rao and Sunar (1994), Tani et al. (1998), and Sunar and Rao (1999).
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The performance of electromechanical devices can be affected by many environmental effects that act as
initial or biasing fields in these devices. For example, for a piezoelectric resonator designed to operate at a
particular resonant frequency, a temperature change or mounting stresses can cause initial deformations
and stresses in the resonator and induce frequency shift (Tiersten and Sinha, 1979). The performance of
underwater transducers is affected by initial fields due to hydrostatic pressure (Wilson, 1985). A piezo-
electric device mounted on a moving object is affected by acceleration induced stresses or strains (Zhou and
Tiersten, 1991). While biasing fields can cause many undesirable effects, they are the foundation of the
working principles of many piezoelectric sensors (Ballantine et al., 1997). For example, the frequency shift
of a piezoelectric resonator caused by a temperature change can be used to design thermometers. The
response of an electroelastic body under biasing fields can also be used to measure nonlinear material
constants (Cho and Yamanouchi, 1987). Either for the purpose of avoiding the biasing fields or making use
of them, knowledge of the behaviors of electroelastic bodies under biasing fields is crucial in the design of
many electromechanical devices. The effect of biasing fields in an electroelastic body can be described by the
theory of small fields superposed on finite biasing fields. Such a theory was given by Baumhauer and
Tiersten (1973), which can also be found in a more recent paper (Tiersten, 1995). The development of the
theory for small fields on finite biasing fields relies on the fully nonlinear theory of electroelasticity
(Tiersten, 1971).

In the special case of an elastic body under biasing fields, many problems have been studied, which can
be found in Iesan’s book (1989) with applications in, e.g., stability. In particular, two-dimensional equa-
tions for anisotropic elastic plates under various biasing fields were derived by a few investigators (Lee
et al., 1975; Lee and Yong, 1986; Wang et al., 1998; Wang, 1999) using power series or trigonometric
approximations along the plate thickness. In this paper, we develop a theoretical model for coupled ex-
tension and flexure with shear deformations of an electroelastic plate under biasing fields. The governing
equations of this model are derived from the full three-dimensional theory of electroelasticity for small
fields superposed upon finite biasing fields, under the assumption that the stress component normal to the
plate vanishes identically. To illustrate the applications of this model, we include the analysis of buckling of
three plates, one single-layered plate and two double-layered plates (i.e., bimorphs) of distinct poling
configurations.

2. Equations for small fields superposed on finite biasing fields

The theory for small fields superposed on finite biasing fields in an electroelastic body (Baumhauer and
Tiersten, 1973; Tiersten, 1995) is summarized in this section. Consider the following three configurations of
an electroelastic body as shown in Fig. 1. Cartesian tensor notation, the summation convention for re-

Fig. 1. The referential, initial, and present configurations of an electroelastic body.
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peated tensor indices and the convention that a comma followed by an index denotes partial differentiation
with respect to the coordinate associated with the index will be used. A superimposed dot represents
material time derivative.

2.1. The referential configuration

At time ¢ = 0, the body is undeformed and free of all fields. A generic point at this state is denoted by X
having rectangular coordinates Xx. The mass density in the referential configuration is denoted by p,.

2.2. The initial configuration

In this state the body is deformed finitely and statically, and carries finite, static electric fields. The
position of the material point associated with X is given by x, = x,(X), with w = x — X as the initial dis-
placement vector. The electric potential of this state is denoted by ¢°. The initial deformations and fields are
also called the biasing fields. They satisfy the following static equations of nonlinear electroelasticity

?Koz,K =0, B?{K =0, (1)

where the body force and charge are not included. The total Piola-Kirchhoff stress tensor ?,81 and the
referential electric displacement vector DY have the expressions

7O = 2,0 T + JoXi péo (E/(;Eg — E°E%Sy, /2) , .
DY = egJoXy ,E" + P.

In (2), Jo = det(x,x), E? = —(bf)a, 04p 1s the Kronecker delta, &, the dielectric permittivity of free space, and

~ 0x ~ )
TO 0 (3)

KL aS KL | g0 wo ’ K a WK

EO,WO'
In (3), the finite strains and the referential electric field of the initial configuration are defined by
Sty = (caxXar — 0xz) /2, Wg = —¢% 4)

and X = X(Skz, W) is an energy density function of the strain tensor S and the referential electric field W.
When the fields are moderately large, the weak nonlinear behavior of the material can be described by the
lower-order terms of

D) (SKL7 Wg) = %CABCDSABSCD — e scWaSpc — %SOXABVVA W + %CABCDEFSABSCDSEF + %kABCDE W,SpcSpe

— 3bascoWiWsScp — £1apc WaWsWe + higher-order terms, (5)

where the second-order material constants c,zcp and e pc represent the elastic and piezoelectric constants,
and y,, the dielectric susceptibility. They are responsible for linear material behaviors. cipcper, kapcpr and
14pc are the third-order elastic, piezoelectric, and dielectric constants. b,pcp are the electrostrictive con-
stants. The third- and higher-order material constants are related to nonlinear behaviors of the material.
The material constants in (5) are called the fundamental material constants, in comparison to the effective
material constants to be introduced below.

2.3. The present configuration

To the deformed body at the initial configuration, time-dependent small deformations and electric fields
are applied. The final position of the material point associated with X is given by y; = y;(X, ¢). The small,
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incremental displacement vector is denoted by u, and the incremental electric potential by ¢'. The equations
of motion and electrostatics for the incremental fields are

~

Tlio(,K = Polly, BII<,K =0, (6)

in which the incremental stress tensor and incremental electric displacement vector are given by the fol-
lowing constitutive relations

Al 1
TKO( = GKO(L}'”}QL + RLKocd)‘Ly
Nl 1
Dy = Riryuyr, — Lirdp -

In (7), Gkuy, Riks, and Ly, are the effective elastic, piezoelectric, and dielectric constants with the following
expressions

(7)

i)
Giutr = Yot ———o— | X + T2 80 + Gkutr = Gk
KoLy M 3 S dSin oo N T Ly 00y + 8Kary LyK
o*x

Rity = — = M Ty, 8
KLy WSy, EU,WOXNM T'KLy ( )
Ly = o + i =1L

O e T

where

otz = oo | EVES (X pX1y — XicsXep) — EVE Xie pXo g+ ESEY (Xicosp — X pX0)

LB (Xie, s — XicsXey) . (9a)
ity = e (EXicaXiy — B, X — ESXaX00) (9b)
Ixi = 0JoXk o X1 o (9¢)

We note that in (7) the incremental stress tensor and electric displacement vector depend linearly on the
incremental displacement gradient and potential gradient. The important thing to observe is that the ef-
fective material constants are functions of the linear and nonlinear material constants c,gcp, €48c> Yups
CapcpErs kapcoes Yapc» Pasep, €tc., and the biasing fields w and qSO. Since the incremental stress tensor and
displacement gradient in general are not symmetric and that the effective constants depend on the biasing
fields, the effective material constants in (9a)—(9¢) usually have lower symmetry than the fundamental linear
elastic, piezoelectric, and dielectric constants. This is called the induced anisotropy. There can be as many
as 45 independent components for Gg,r,, 27 independent components for Rg;,, and six independent
components for Lg;. The above shows that the biasing fields effectively change the material properties and
hence the material response to excitations. We note that the expression in Tiersten (1995) corresponding to
(9a) has minor algebraic errors (Yang and Tiersten, 1999), and (9a) is the corrected version. The following
variational formulation corresponding to (6) is convenient for developing plate equations

/V [(?;M - poiix> Su, + B;,(a(/)l}dv =0. (10)

3. The derivation of plate equations

Consider an electroelastic plate in the reference configuration with the X3 axis along the plate normal, as
shown in Fig. 2. Since the plate is assumed to be thin, we make the usual assumption of vanishing normal
stress (Mindlin, 1955)
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?313 = G33L~/uy,L + R;33 ¢IL = 0. (1 1)
From (11) we can solve for u;; with the result
-1
U3z = [G33L7u'y,L — Gy + RL33¢)}L]- (12)
3333

We note that u3 3 has been eliminated from the right hand side of (12) because when L = y = 3 the two terms
containing u3 3 will cancel with each other. Substituting (12) back into (7), we obtain

[l ral ) 1
TKa = GKacLy”y,L + RLK‘1¢,L7

O _ (13)
D}< = Ripyuy . — Lyt d’,lp
where
Gxaury = Grory — GroasGaary/ Gaaas
Riiy = Riry — Ri33Gasy/ Gassas (14)

Ly, = Lii + Ri33R133/Gaass.

We note that in (13) 7’313 = 0 and its right hand side does not contain u; ;.
For a first-order theory we make the following expansions of the incremental displacement and electric
potential

]%’ug
(0)

(15)

where u<10) and u(ZO) are the plate extensional displacements, ugo) the flexural displacement, and u(l1> and u(21>

the shear displacements. From these plate displacements the thickness expansion or contraction accom-
panying the extension and flexure of the plate due to Poisson’s effect can be found from (12) if Wanted
Substltutmg (15) 1nto (10), with integration by parts, for independent variations of Bul , 6u2 , Su; , 8141 s
5142 , q5<0) and 8([) , we obtain the following two-dimensional equations of motion and electrostatics

Ty, + F9 =2pphii"), «=1,2,3, (16a)
T, T FD =20 o, (16b)
X3
z;@ | %
X n

Fig. 2. The reference configuration of an electroelastic plate and the coordinate system.
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DY, +D" =0, (16¢)

DY, - D" + D" =0, (16d)

where we have introduced the convention that the index A4 assumes 1 and 2 but not 3. Eq. (16a) fora =1, 2
are the equations for extension, and for « = 3 the equation for flexure. Eq. (16b) are for shears in the X; and
X, directions. In (16a)-(16d) the plate resultants and surface loads of various orders are defined by

{70 D0} = /hX”{T,gw D} paxs, (17a)

., h ~ ~
FP =T . DY =Dl n=o0,1, (175)

wheref",((';) represent plate extensional and shearing forces, and bending and twisting moments. From (15)
we can also write

u},L%U<°)(X1,Xz7 1)+ XU (X1, X, 1),

(18)
¢L =~ 0 (X1, X, 1) — X, (X1, X5, 1),
where

(0) (0) (0) (0) (0) (1)
Uy = Uy Up uy, Uy =u’,

(0) (0) (0) (0) (0) (1)
Uy, =U Uy =uy;, Uy =uy’,

0 (0 (0) (0) (0
U3(1> = ”3,37 Uy = u35, U33) =0,

1 a 1) 1 1
U1(1> = ”1,1)7 U1(2 = “gz)a U1(3) =0,

(1) (1) (1) (1) (1) (19)
Uy =uy;, Up 225 Uy =0,

U3(11> =0, Us(;) =0, U3(;) =0,
0 0 0 0 0
VI,]():_QSFI), Wz():_(bfz)’ W3():—(f>(l),
1 1 1 1 1
Wl():_(ﬁ(l), Wz():_d)fz)’ W3():0.

The displacement gradients of various orders in (19) represent plate strains and bending curvatures, etc.
From (17a), with the substitution of (13) and (18), we obtain the plate constitutive relations as

e~ 0 0 1 1
TI((oc GKocL )L + GKO(L,) ) R(ngxVVL( )~ RilgocVVL( )7
=0 1 1 0 2 1
Ty = G, Uy + G, Uy — Riga W = R, 1,
) (0 (0) (1) 57(1) (20)
Dy = Ry, U JrRKLU +LKLW + LW,
! 1 0 2) 17/(1
D;() = RS(L)*/ UyL) =+ RE{L}rUv(L + LKL I/VL( ) + LS(L) VVL( )’
where
( ( ! Iz T
{G;;L},,RE:ZEV,L;L)} :/ X{ Gty Rzy L YdXs, n=10,1,2, 1)
—h

Physically, G}QL., represent the plate flexural and extensional stiffness, etc. We note from (20) that extension
and bending may be coupled due to nonuniform biasing fields. We also note from (21) that in a plate
theory, only the moments of various orders of the biasing fields matter, not the exact three-dimensional



Y.T. Hu et al. | International Journal of Solids and Structures 39 (2002) 2629-2642 2635

distributions of the biasing fields. In summary, we have obtained the two-dimensional equations of motion
and electrostatics (16a)—(16d), the constitutive relations (20), and the displacement gradients and electric
fields (19). With successive substitutions, (16a)—(16d) can be written as seven equations for the seven un-
knowns of u(lo), u(zo), u(;)), ui”, uél), $»© and ¢'V. To these equations the proper forms of the boundary
conditions can be determined from the variational formulation (10). At the boundary of a plate with unit
exterior normal n and unit tangent s, we need to prescribe

O, T orul

(22)

We note that in the first-order plate theories by Mindlin (1955) using power series approximation for the
variation of fields along the plate thickness, shear correction factors are often needed. Those correction
factors play a role in shear dominated cases, e.g., vibrations with frequencies close to the first thickness-
shear frequency. In the present paper our main interest is on the extension and flexure with small shear
deformations. Therefore we ignore the shear correction factors which, if needed, can be included in the
manner of Mindlin (1955). The simplest way is to use a modified mass density (Mindlin, 1955).

4. Buckling of piezoelectric plates

Potential applications of the equations derived in the previous section are many. The simplest may be the
buckling of electroelastic plates. For the classical description of the buckling phenomenon, the electroelastic
counterpart of the initial stress theory in elasticity is sufficient. Such a theory can be obtained by setting
x = X in the equations for small fields superposed on finite biasing fields (Iesan, 1989). Furthermore, for
buckling analysis, a quadratic expression of X with the first three terms of the right hand side of (5) and the
corresponding linear constitutive relations will be enough, and the biasing fields can be treated as small
fields too. With these simplifications, we use the equations in the previous sections to perform buckling
analysis of a few piezoelectric plates and bimorphs made from polarized ceramics. Three cases corre-
sponding to Fig. 3 will be considered. We limit our discussion to plane strain analysis with u, = 0 and
0/0X; = 0. For all three cases the two major surfaces of the plate at X3 = 44 are traction free and are
unelectroded with vanishing normal electric displacement. The plates are mechanically simply supported at
their end faces at X; = 0 and X; = /. The electric end conditions will be specified later in each specific case.
The two ends of the plates are loaded by an axial force p = 2hT}, per unit length in the X, direction, which is
responsible for the biasing deformation.

4.1. Case (a)

Consider a ceramic plate poled in the X; direction as shown in Fig. 3(a). From Auld (1973), the material
matrices are

Ciz C13 C13 0 0 0 €33 0 0

Cci1 C11 Cr12 0 0 0 €31 0 0 £33 0 0

C3i1 C1 C11 0 0 0 €31 0 0 0 e 0 (23)
0 0 0 ¢ 0 0| 0o 0 o 0 0 &)

0 0 0 0 cy O 0 0 es i

0 0 0 0 0 C44 0 €15 0
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Fig. 3. Simply supported ceramic plates of length / and thickness 2A.

which are obtained from the material matrices for ceramics poled in the X3 direction by properly reordering
rows and columns. The plate is electroded at its two end faces at X; = 0 and X; = /. The electrodes are
shown by thick lines in the figure. When the initial load p is being applied, the end electrodes are shorted to
eliminate the initial electric field £; which otherwise would exist. Once p is already loaded, there exist initial
charges on the end electrodes. The electrodes are then opened during the incremental flexural deformation
and there are no incremental charges on these electrodes. Therefore for the incremental fields the electric
displacement vanishes at both ends. Then the governing equations for the incremental fields take the
form

0) (0 0 (1 0 ,(
G§3)13”;,21 + G(13>31”(1.; + R§1)3¢,<1) =0, (24a)
2 1 0 0 0 1 2 1 0 1
Gﬁl)nuﬁ,fl - G(31>13“g,f - Ggl)ﬂu(l ) + R(ll)ld).<11) - R(33>1¢( )= 0, (24b)
0) ,(0
1 =0 240
2) (1 0) (0 0) (1 2) (1 0) ,(1
R§1)1“5,1)1 - Rgl)faugl) - Rg3)1”§ )~ L§1>¢f11) +Lg3>¢< '=0 (24d)
and the boundary conditions are
ul) =0, atXx; =0,/ (25a)
T\ = G| + R Y =0, at X =0,/ (25b)
D\ = —2hey3¢) =0, at X; = 0,1, (25¢)
DV =R u| — L9 =0, atx;=0,1, (25d)
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where
0 0 0 0
G(13>13 = 2hcys + p, G§3)31 = Ggl)w = Gglél = 2hcus,

L,
Gl = < (2hesy +p), RS, = R, = 2heys,

3
2 2 (26)
2 _ 2 _ 0
Rgl)l = §h3e33, L(“) = §h3833, L§3) = 2heyy,
2 2

_ c _ €31C3] ~ €
Gy =033 ——2, @3 = e33 — , By = &3y + k.

Ci1 Cl1 Cl1

We note from (25b) that the bending moment ZA"I(I1 ) s coupled to Wl(l) = —q’)fll ) through es;; as expected.
Furthermore, from ?fg ) = G(lg)nug?f + Gﬁgéluﬁl) + Rg%(f)“) it can be seen that the transverse shear force ?1(2 Vis
coupled to W;O) = — ¢!V through e5 as expected. Eqs. (24c) and (25¢) show that ¢'” is a constant which can
be taken to be zero. Let

uy’ =Asm/iX;, u, = BcosiX; = Ccos /X
O — asinix;, ") =BcosiX;, ¢V =Ccosix, (27)

where A, B, and C are undetermined constants and A = n//. The boundary conditions in (25a)—(25d) are
satisfied automatically. Then the buckling load can be determined from the following equations obtained
by substituting (27) into (24a), (24b) and (24d)

0 5 0 2 (0
2G04+ 1G9, B+ ARY,C =0,

0 2 0 2 0
)‘Ggl)ISA + (ing 1)11 + Gg])31>B + ()~2R§1)1 + R(33)1)C =0, (28)
IRA + (2RE + R )B — (2L + L) c = 0.

For nontrivial solutions of A4, B, andC, the following condition must be satisfied

12 ~(0) el (0)
g G(%)gm 2 (2A)G1331 (0) 2 ()ZL)R313 (0)
2Gyis 4G+ G ARy + Ry =0, (29)

(0) 2p(2) (0) 227 (2) (0)
ARy ARYT) + Ry _<A Ly +L33)
which can be written as
aMp12 4 pM50 4 o — g, (30)

where

2 2
S P, T (h m_;
p 2}16‘337 0 3 (l ) a 05

2
s _ 1 P /106%5 + (ioé33 + 615)
—Ao+5—33 (Zo + 1)cas + o1t + ks ) (31)

D= —
C33

AoCas +

7 2 2--132
Aoels + AyCs; €550
e + Aogss

Since 4y < 1 for a thin plate, it follows from (31) that (b()* > 4aWc® and b1 > oV for thin plates.
Hence, an approximate solution of (30) can be found as
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) MM
S 1 a e 32
P ( Tony ) (32
Our main interest is the effect of piezoelectric coupling on the buckling load. To see this more clearly, we let

ca4 — 00 1n (32), which effectively eliminates plate shear deformations and the related piezoelectric coupling
through e;s, and then expand (32) into a polynomial of 7y which is small. This leads to

P (14 ), (33a)

i(z = é§3/((_33381]), (33b)

where &2 is an electromechanical coupling factor. We note that under our notation —4, is the nondimen-
sional buckling load from an elastic analysis without considering piezoelectric effect. The second term on
the right hand side of (33a) represents the effect of piezoelectric coupling which is due to es;; alone now. We
note that this additional term is proportional to k> which ranges from 0.1 to 0.6 for most polarized ce-
ramics. Since &> is multiplied by 4, which is a small number, the piezoelectric modification on the buckling
load is a small addition to the elastic buckling load. Hence an elastic analysis without considering piezo-
electric effect gives a conservative estimate of the buckling load.

4.2. Case (b)

In this case we consider a ceramic bimorph as shown in Fig. 3(b). The end faces are unelectroded. Then
the governing equations for the incremental fields are

Giaaus + Gl =0, (34a)
G§21)11“§%1)1 + Rgll)l 4’(?1) - G(a(i)w“g?l) - Gg(i)ﬂugl) =0, (34b)
Rl — L¢80 = 0, (34c)
LYl — Ly =0, (34d)
with the following boundary conditions
W) =0, atX; =0,1, (35a)
?1(1” = G(121)11”(1{1) +R(111)1¢A<?) =0, atX, =0,/ (35b)
DY =R\ - L{V¢ =0, atx;=0,1, (35¢)
DYV =-L7¢) =0, atx, =0,/ (35d)

where the plate material constants are as in (26) plus
R\ = Wes. (36)

We note from (35b) that the bending moment ?1(11 ) is coupled to Wl(()) = —¢>‘<?> through e;; as expected. We
also note that Egs. (34d) and (35d) imply ¢'" = 0. Assume
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ug()) = Asin X, (37a)
u(l1> = Bcos X, (37b)
¢V = Dcos /X, (37¢)

which satisfy the boundary conditions in (35a)—~(35d). Eliminating ¢* from (34b) by (34c), and substituting
(37a) and (37b) into the resulting (34b) and (34a), we obtain

Giyd + 4Gz B =0,

38)
0 2 0)\—1 p(1)2 0 (
)~G(31)13A + {’12 {G(ll)ll + (L(u)) R<11)1} + G(31)31}B =0.
For nontrivial solutions of 4 and B, the following must be true
y (0 0
/“G(13)13 G(13)31 _0 (39)
5 (0 2[ A2 0)\—1 p(1)2 0 | =Y,
AG§1)13 2 {G(n)n + (Lgl)) R(n)l] + G§1)31
or
a(2)1—,(2>2 4 b(2)l—,(2) +c9 = 0, (40)
where
=0 _P @ _
P T oney 4T
b = +L (Zo + e +§/1é &
— 0 e 0 44 4 0€33633 | (41)
@) ) 3 152 o1
= o AoCas + Z)LOCMCB €538 |-
33

Then an approximate solution of (41) is

@) 22
50 S [ 4 42
P b2 ( e (42)

Letting c44 — oo in (42) and then expanding the result into a polynomial of y, we have

1%

3_
== (1 + Zk§3>, (43a)

I_€§3 = é§3/(633833) . (43b)

Comparing (43a) with (33a), we note the important difference that in (43a) the piezoelectric modification on
the buckling load is not multiplied by the small number 4. This is because in (24a)—(24d) the plate pi-
ezoelectric coefficient R(121>1 is proportional to 4* but in (34a)—(34d) Rﬁ‘& is proportional to 4 and the fact that
it is the squares of the piezoelectric coefficients that appear in the buckling loads. Therefore the piezoelectric
effect on the buckling load is much stronger in the present case than in the previous case.
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4.3. Case (c)

The third example is a ceramic bimorph as shown in Fig. 3(c). For ceramics poled in the X; direction the
material matrices are (Auld, 1973)

Ci1 C12 C13 0 0 0 0 0 €31

Co1 C11 C13 0 0 0 0 0 €31 e 0 0

C31 C31 C33 0 0 0 0 0 €33 '61 e 0 (44)
0 0 0 cuy O 0 0 es 0| 0 0 en)

0 0 0 0 cy O es 0 0 ?

0 0 0 0 0 ce 0O 0 O

The plate is electroded at X; =0 and X; =/, with shorted and grounded electrodes. The governing
equations take the following form

Giasus + Gyl +Rijygl =0, (45a)
ngl)llugfl)l - G(S(?Bug?l) - Gg%lu(ll) + [Rgll)l - Rgla)l} ¢(11> =0, (45b)
LY¢ =0, (45¢)
Rl — [ — RO Jul! — L0 + 1060 — . (454)

The boundary conditions are

u) =0, atXx; =0,1, (46a)

T = Gl + Wey ¢ =0, atXx, =0,1, (46b)

dV =0, atXx, =01 (46¢)

V=0, atXx; =0, (46d)
where

ngl)ll = %hz (2}1511 + p), G<1°3>13 = 2hcyy + p,

Ggg)Sl = Gg(i)lz = Gg?sl = 2hcya, Rﬁ'& = Rg?l = hzels7

R<311)1 = i’es, L(l(i) = 2hey, Lﬁ) = §h3811, L(;? = 2h&s;,

i =cu— 0%3/5337 €31 = e3 —e3C31/c33, &3 =&+ e§3/c33.

We note from (46b) that the bending moment f’fll Vs coupled to W;O) = —¢"V through &3, as expected. In
this case ¢ is zero. We let

ul) = asinix,, o) =Bcosix,, ¢V = Csinix, (48)
which satisfy the boundary conditions (46a)—(46d). Substituting (48) into (45a),(45b) and (45d)
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2G04+ 2G\% B+ 2R\LC =0,
)~G(3?)13A + (/IZG(IZRII + Gg(i)n)B + i(R(113)1 - R<311)1) C=0,
PR A+ 2(RY - R )B - (2L + 1Y) c = 0.
For nontrivial solutions of 4, B, and C, the following condition should be satisfied
2o, ol i)
iG(;;)B /ALZG(121>11 + Gg%l - (Rgll)l - R(113>1> =0,
PR (R R (e )
or
a®p2 4 pO5O 4 O — g,
where

~(3) p

P = ey

at

= 40,

) 2
320 }u()ew + (615 — é31) :|
® g 4L
b =g +— (Ao + Dew +
cn 4(20811 + 533)

b

112 .52 =1, 32
3/L0 |:/L0€15 + 1 c44e31]

C(3) = — )v0c44 +
1 4(/10811 +<§33)

An approximate solution of (51) is found to be

(3) (3)0)
c ae
pPle——(1+— |
b (b®)
Letting c44 — oo in (53) and expanding it into a polynomial of 4y, we have
_ , 3 . o (= -
p(3) = —A (1 + Zkgl), k§1 = e%l/(011833>

which shows the same behavior as (43a) and (43b).

1%

5. Conclusions

2641

(49)

(51)

The coupled extension and flexure deformations with shear of an electroelastic plate under biasing fields
can be described by a two-dimensional model. The application of this model in analyzing the buckling loads
of three plates of different configurations shows that the electromechanical coupling strengthens the plates
against buckling and that the strengthening effect is significant for materials of strong piezoelectric cou-
pling. This implies that an elastic analysis without considering piezoelectric coupling yields a conservative

estimate of the critical buckling loads.
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